Search results for "fluted fragment"

showing 3 items of 3 documents

Quine’s Fluted Fragment is Non-elementary

2016

We study the fluted fragment, a decidable fragment of first-order logic with an unbounded number of variables, originally identified by W.V. Quine. We show that the satisfiability problem for this fragment has non-elementary complexity, thus refuting an earlier published claim by W.C. Purdy that it is in NExpTime. More precisely, we consider, for all m greater than 1, the intersectionof the fluted fragment and the m-variable fragment of first-order logic. We show that this subfragment forces (m/2)-tuply exponentially large models, and that its satisfiability problem is (m/2)-NExpTime-hard. We round off by using a corrected version of Purdy’s construction to show that the m-variable fluted f…

060201 languages & linguistics000 Computer science knowledge general worksdecidabilityQuinefluted fragment06 humanities and the arts02 engineering and technologysatisfiabilityPurdy0602 languages and literatureComputer Science0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingnon-elementary
researchProduct

The fluted fragment revisited

2019

AbstractWe study the fluted fragment, a decidable fragment of first-order logic with an unbounded number of variables, motivated by the work of W. V. Quine. We show that the satisfiability problem for this fragment has nonelementary complexity, thus refuting an earlier published claim by W. C. Purdy that it is in NExpTime. More precisely, we consider ${\cal F}{{\cal L}^m}$, the intersection of the fluted fragment and the m-variable fragment of first-order logic, for all $m \ge 1$. We show that, for $m \ge 2$, this subfragment forces $\left\lfloor {m/2} \right\rfloor$-tuply exponentially large models, and that its satisfiability problem is $\left\lfloor {m/2} \right\rfloor$-NExpTime-hard. We…

Logic0102 computer and information sciencesQuine01 natural sciences68Q17Fragment (logic)0101 mathematicstransitivityMathematicsfirst-order logicDiscrete mathematicsTransitive relationNEXPTIME010102 general mathematicsdecidabilityfluted fragmentSatisfiabilityDecidabilityFirst-order logicPhilosophysatisfiability010201 computation theory & mathematicssatisfabilityBoolean satisfiability problemcomplexityJournal of Symbolic Logic
researchProduct

Fluted Logic with Counting

2021

The fluted fragment is a fragment of first-order logic in which the order of quantification of variables coincides with the order in which those variables appear as arguments of predicates. It is known that the fluted fragment possesses the finite model property. In this paper, we extend the fluted fragment by the addition of counting quantifiers. We show that the resulting logic retains the finite model property, and that the satisfiability problem for its (m+1)-variable sub-fragment is in m-NExpTime for all positive m. We also consider the satisfiability and finite satisfiability problems for the extension of any of these fragments in which the fluting requirement applies only to sub-form…

Physics::Popular Physicscounting quantifierssatisfiabilitycomplexiTheory of computation → Complexity theory and logicNuclear ExperimentcomplexityFluted fragment
researchProduct